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Abstract
An important class of game-theoretic incentive mechanisms
for eliciting effort from a crowd are the peer based mecha-
nisms, in which workers are paid by matching their answers
with one another. The other classic mechanism is to have the
workers solve some gold standard tasks and pay them accord-
ing to their accuracy on gold tasks. This mechanism ensures
stronger incentive compatibility than the peer based mecha-
nisms but assigning gold tasks to all workers becomes ineffi-
cient at large scale. We propose a novel mechanism that as-
signs gold tasks to only a few workers and exploits transitivity
to derive accuracy of the rest of the workers from their peers’
accuracy. We show that the resulting mechanism ensures a
dominant notion of incentive compatibility and fairness.

1 Introduction
Crowdsourcing is a popular method for collecting data but
the collected data is often noisy and of low quality. The
quality gets significantly degraded if solving the tasks re-
quire some costly effort. The problem can be addressed by
rewarding the workers with a performance based bonus. One
way to reward the workers is to use the peer based mecha-
nisms (Dasgupta and Ghosh 2013; Radanovic, Faltings, and
Jurca 2016). In these mechanisms, the reward of a worker
depends on her own answers and of other workers. The
mechanisms admit honesty as an equilibrium strategy (i.e.
if other workers do high quality work, the best response for
any worker is also to do the same). But the mechanisms also
admit other dishonest equilibria. The other way to reward the
workers is to use gold standard tasks (Oleson et al. 2011). A
common technique is to randomly mix some gold tasks in
the batch of tasks solved by every worker. Workers are then
rewarded based on their performance on the gold tasks. This
incentivizes the workers for performing high quality work
as a dominant strategy (i.e. regardless of other workers’ an-
swers). However, since every worker solves gold tasks and
the requester already knows the correct answers of the gold
tasks, it leads to a waste of the useful task budget of the re-
quester. Moreover, to reduce the variance in the rewards, one
may require a sufficient number of gold tasks to be solved
by every worker. Also, this technique only works if the gold
tasks are not identified but as shown by (Checco, Bates, and
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Demartini 2018), the gold tasks can be easily leaked because
of their repeated use for all workers. Another technique is
to assign gold tasks to a worker only with a small (constant)
probability and give a fixed reward (independent of the qual-
ity of work) otherwise. While it solves many of the prob-
lems with the first technique, the scalability of the constant
probability technique remains limited because the number
of workers who need to be assigned gold tasks, grows as the
total number of workers grows. Otherwise, this technique
assumes that the rewards of the workers solving gold tasks
can be made arbitrarily large to compensate for the smaller
probability1. In many practical settings, this is undesired or
not possible.

In this paper, we introduce a scalable incentive mecha-
nism (the Deep Bayesian Trust Mechanism) which guar-
antees strong incentive compatibility while assigning gold
tasks only to a small (constant) number of workers and re-
warding the rest using the answers provided by peer work-
ers. Since we ensure that gold tasks are assigned to a
constant number of workers and not just with a constant
probability, our mechanism is also suitable for very large
scale settings. Moreover, this mechanism doesn’t suffer from
the problem of arbitrarily large payments discussed earlier.
When there is a non-zero cost of effort for solving the tasks,
the mechanism still ensures the desired theoretical proper-
ties if the payments are scaled appropriately only to cover
the cost of effort. This scaling constant doesn’t depend on
the probability of assigning gold tasks. The mechanism is
based on the observation that in large scale crowdsourcing
settings, every worker reports answers to many similar tasks
and hence the joint distribution of the answers of any two
workers can be used to infer the accuracy of one worker
given the accuracy of the other worker. It starts by rewarding
a small set of workers based on gold tasks and then uses the
answers provided by the workers on non-gold tasks as con-
tributed gold tasks to reward more workers. It continues this
deep chain of trust to an arbitrary depth, until all the tasks
have been solved by the required number of workers.

As fairness of algorithms affecting humans is becoming
a critical issue, it is important to justify the fairness of al-

1This can be understood using the example of penalty mecha-
nism in public transport systems. If tickets are checked very rarely,
then the penalty for being found without ticket has to be made very
high to discourage rational people from traveling without tickets.



gorithms that determine payments of the workers. We, for
the first time, address the issue of fairness of crowdsourc-
ing incentive mechanisms in a principled manner and show
that our mechanism ensures fair rewards to the workers. The
summary of our main contributions is as follows:

• We propose a dominant uniform strategy incentive com-
patible (DUSIC) mechanism, called the Deep Bayesian
Trust Mechanism, which rewards a constant number of
workers with gold tasks and the rest using peer answers.

• On one hand, our mechanism addresses the issues with
existing gold tasks based mechanisms and on the other
hand, it also shows how the limitations of purely peer
based incentive mechanisms can be overcome in some
cases by assigning gold tasks to a few workers. Thus, it
is also of interest for the peer-prediction community.

• We define a notion of fairness of rewards in crowdsourc-
ing and show that our mechanism ensures fairness.

• Through numerical experiments, we show the robustness
of our mechanism under various reporting strategies of
the workers. In a preliminary study conducted on Amazon
Mechanical Turk, we observe that the mechanism helps in
eliciting effort and improving the quality of responses.

The supplementary material for this paper is available on
authors’ website.

2 Related Work
The research on crowdsourcing incentive mechanisms is
mainly divided into two categories. The first category of
work assumes that some spot checking option (for exam-
ple, gold standard tasks) is available. The constant probabil-
ity mechanism, discussed in Section 1, is analyzed formally
by (Gao, Wright, and Leyton-Brown 2016). This mechanism
randomly selects a few workers and spot checks only those
workers with an oracle. The rest of the workers are given
a constant amount of reward (independent of the quality of
their work). The scalability of this mechanism is limited be-
cause the number of workers who need to be spot checked,
grows as the total number of workers grows. Otherwise,
in order to compensate for the smaller probability of spot
checking, the mechanism allows the payments of the spot
checked workers to be arbitrarily large.

The second category of work assumes no gold tasks to
be available and uses only peer answers. Such mechanisms
are called the peer-consistency (or peer-prediction) mech-
anisms. The early mechanisms in this category were ei-
ther not detail-free (required knowledge about the beliefs of
the workers) (Miller, Resnick, and Zeckhauser 2005) or not
minimal (required workers to also submit some additional
information other than their answers on the tasks) (Prelec
2004; Radanovic and Faltings 2013; Witkowski and Parkes
2012). On the other hand, a simple output-agreement mech-
anism (Waggoner and Chen 2014) works only under strong
assumptions on the correlation structure of workers’ obser-
vations. A seminal work in the category of minimal, detail-
free mechanisms for crowdsourcing is (Dasgupta and Ghosh
2013), which ensures that truth-telling is a focal equilibrium

in binary answer spaces. The Correlated Agreement mech-
anism (Shnayder et al. 2016) generalizes the mechanism
of (Dasgupta and Ghosh 2013) to non-binary answer spaces
with moderate assumptions on the correlation structure of
workers’ observations. Both these mechanisms require that
workers solve multiple tasks. The Logarithmic Peer Truth
Serum (Radanovic and Faltings 2015), which is based on
an information theoretic principle, requires no such assump-
tions and ensures strong-truthfulness in non-binary answer
spaces. The guarantees of the mechanism are ensured in
the limit (when every task is solved by an infinite number
of workers). The Peer Truth Serum (PTSC) of (Radanovic,
Faltings, and Jurca 2016) doesn’t require even this assump-
tion for the theoretical guarantees and works with a bounded
number of tasks overall. In theory, these peer-consistency
mechanisms offer comparatively weaker incentive compat-
ibility than the gold tasks based mechanisms. They make
truth-telling an equilibrium strategy for the workers but also
admit some non-truthful equilibria. While the no-effort or
the heuristic equilibria exist in these mechanisms, the equi-
libria are not attractive since they pay zero reward to the
workers. The mechanisms also admit the permutation equi-
libria, which give the same payoff as the truthful equilib-
rium. (Liu and Chen 2018) avoid this issue in binary an-
swer space by using ground truth of the answer statistics.
As shown by (Gao, Wright, and Leyton-Brown 2016), it
is possible to eliminate the undesired equilibria in the peer
based mechanisms if the center can employ a limited amount
of spot checking. When spot checking is not possible, it is
enough that there exist a small fraction of honest workers.
Either of these options work if the rewards are scaled appro-
priately to compensate for a low probability of spot checking
and a low fraction of honest agents respectively.

Finally, the mechanism of (de Alfaro et al. 2016) com-
bines ideas from the two categories of work. It arranges
the workers in a hierarchy. A constant number of workers
in the top level of the hierarchy are evaluated by an ora-
cle. The workers below that level are evaluated by the work-
ers (peers) in one level above them. The mechanism solves
the scalability issue of the gold tasks based mechanisms.
Though it offers comparatively weaker incentive compatibil-
ity (unique Nash equilibrium) as compared to the gold tasks
based mechanisms but eliminates all the undesired equilib-
ria that exist in peer based mechanisms. However, it requires
that workers are informed of their level in the hierarchy. The
mechanism is also ex-ante unfair towards the workers in the
sense that workers in the top level of hierarchy are evalu-
ated more correctly than the workers in the lower levels.
Similar to (de Alfaro et al. 2016), our work is also at the
intersection of the two categories of works. However, our
mechanism doesn’t suffer from the issues (level information
requirement and unfairness) that their mechanism has and
also guarantees stronger incentive compatibility.

3 Model
We consider large scale crowdsourcing settings in which
workers provide answers of many micro-tasks requiring hu-
man intelligence. The tasks have a discrete answer space
{0, 1, ...,K − 1} of size K. We will use [K] to denote



this space. For any task, our model has 3 random variables.
The first is the unknown ground truth G answer for the
task. The second is the worker i’s observed answer Xi that
she obtains on solving the task. Xi is worker’s private in-
formation. The third is the worker’s reported answer Yi
that she actually reveals as her answer for the task. We use
g, xi, yi ∈ [K] to denote realizations of these random vari-
ables and will drop the subscript i, when the context is clear.

Definition 1 (Effort Strategy). The effort strategy of a
worker i is a binary variable ei. If the worker invests effort
in solving a task, ei is 1 and is 0 otherwise.

The effort strategy captures the standard binary effort
model of the incentive mechanisms literature (Dasgupta and
Ghosh 2013). Whenever ei = 1, the worker incurs a strictly
positive finite cost.

Definition 2 (Reporting Strategy). When ei = 1, the report-
ing strategy Si of a worker i is a K × K right stochastic
matrix, where Si[x, y] (∀x, y ∈ [K]) is the probability of her
reported answer on a task being y given that her observed
answer is x. When ei = 0, the reporting strategy ~Si of a
worker is a K dimensional probabilistic vector, where ~Si[y]
(∀y ∈ [K]) is the probability of her reported answer on a
task being y.

The effort and the reporting strategy together model pos-
sible strategies that a worker may play in obtaining and
reporting her answer and is a standard model in the liter-
ature (Shnayder et al. 2016). Two common strategies are
truthful and heuristic.

Definition 3 (Truthful Strategy). A worker i’s strategy is
called truthful if ei = 1 and Si is an identity matrix.

In a truthful strategy, a worker solves a task and reports
her answer as obtained.

Definition 4 (Heuristic Strategy). A worker i’s strategy is
called heuristic either if ei = 0 or if ei = 1 and all rows of
Si are identical.

In a heuristic strategy, a worker either doesn’t solve the
tasks (ei = 0) or solves the tasks (ei = 1) but reports in-
dependently of the obtained answer. Note that a common
colluding heuristic strategy, in which workers collude us-
ing a “default” answer, is included in the model. For ex-
ample, in binary case, when ei = 0, a probabilistic vector
~Si = [1, 0] means that worker always answers 0. Similarly,
when ei = 1, a matrix Si with both rows equal to [1, 0]
means the same. It is also easy to see that the model also in-
cludes mixed strategies since mixed strategies can be written
as convex combination of the pure strategies.

Definition 5 (Proficiency Matrix). The proficiency matrix
Ai for a worker i is a K ×K right stochastic matrix, where
Ai[g, x] (∀g, x ∈ [K]) is the probability of her obtained an-
swer on a task being x given that the ground truth is g.

This definition is due to (Dawid and Skene 1979), which
is a widely accepted model in crowdsourcing literature. The
proficiency matrix models the ability of a worker to obtain
correct answers, when she invests effort. Every worker can
have a different proficiency matrix.

Definition 6 (Trustworthiness Matrix). The trustworthiness
matrix Ti of worker i is a K × K right stochastic matrix,
where Ti[g, y] (∀g, y ∈ [K]) is probability of her reported
answer on a task being y given that ground truth is g.

Note the difference between the proficiency and trustwor-
thiness matrices. Proficiency models worker’s ability while
trustworthiness is a function of her ability and honesty.
Proposition 1. If ei = 1, the trustworthiness matrix Ti of
a worker i is given by Ti = AiSi. If ei = 0, Ti is a matrix
with all rows equal to reporting strategy vector ~Si.

Our model is summarized in Figure 1.
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Figure 1: Model

Until now, we defined the strategy space for the settings in
which workers solve one task each. In our work, we consider
settings, in which workers solve multiple tasks and next de-
fine the strategy space for multi-task settings.
Definition 7 (Uniform Strategies for Multi-task Settings). A
worker’s strategy (effort and reporting) in multi-task settings
is called uniform if the strategy is the same on all tasks in a
given batch solved by the worker.

The uniform strategies are sometimes also called consis-
tent strategies in the literature. It is important to note that the
space of uniform strategies DOES INCLUDE mixed strate-
gies. The motivation for considering only uniform strategies
in the multi-task literature is that the tasks of similar nature
can be grouped in batches so that workers don’t strategically
distinguish between tasks assigned to them.
Definition 8 (Dominant Uniform Strategy Incentive Com-
patibility). Given that workers can play any strategy from
the space of uniform strategies, an incentive mechanism is
called dominant uniform strategy incentive compatible (DU-
SIC) if the expected reward of any worker is strictly maxi-
mized by playing a truthful strategy, no matter what uniform
strategies other workers use.

In this notion of incentive compatibility, the reward of
a worker is strictly maximized in a truthful strategy even
if others are not truthful. Thus, the truthful strategy dom-
inates any heuristic strategy of not solving the tasks and
non-truthful strategies of solving the tasks but reporting non-
truthfully. It also dominates any mixed uniform strategy.
Definition 9 (Oracle). An agent o is called an oracle if her
trustworthiness matrix To is known and To doesn’t have
identical rows.

For example, if the oracle is the source of gold standard
answers, then by definition of gold tasks, oracle’s trustwor-
thiness matrix is an identity matrix.

We use P (g) to denote the prior probability of the ground
truth answer of any randomly selected task being g. It is as-
sumed to be known and fully mixed (P (g) > 0 ∀g ∈ [K]).
It can also be estimated from the gold standard answers.



4 Finding Trustworthiness Transitively
In this section, we first explain the main building block of
our mechanism: the process of finding the trustworthiness
of a worker, given the trustworthiness of another worker by
using the joint distribution of their answers on shared tasks.
Definition 10 (Peer). For a worker i, the mechanism assigns
another worker j as her peer. Workers i and j are assigned
sets of tasksQi andQj respectively such that |Qi∩Qj | � 0.

The definition requires that some tasks are solved by both
the worker and her peer. Both workers also solve some other
tasks that are not shared. It may be noted that eliciting an-
swers of multiple workers on same tasks is the central idea in
crowdsourcing (Surowiecki 2005) and is not a new require-
ment introduced in our paper.

Let Tj be the known trustworthiness matrix of worker j
and let j be the peer of another worker i, whose trustworthi-
ness matrix Ti is not known. We want to find the unknown Ti
using the answers given by the two workers and the known
Tj . Since the worker i and her peer j solve some shared tasks
by definition, their reported answers on these shared tasks
provide the mechanism with an empirical joint distribution
of their answers. We use ω(Yi = yi|Yj = yj) to denote this
conditional empirical distribution and ω(Yj = yi) to denote
the empirical distribution of answers of peer j only.
Lemma 1. As |Qi ∩Qj | → ∞, the following holds w.h.p.

ω(Yi = yi|Yj = yj) =
∑
g∈[K]

Ti[g, yi] ·
(Tj [g, yj ] · P (g)

ω(Yj = yj)

)
(1)

∀ yi, yj ∈ [K] and ω(Yj = yj) 6= 0.
The proof of Lemma 1 is provided in the supplementary

material. The LHS in Equation 1 is the conditional probabil-
ity P (Yi = yi|Yj = yj) in the limit. When we apply Bayes’
rule to write this conditional probability in terms of other
model probabilities, we get the RHS of Equation 1. This as-
sumes that the answers of workers i and j are conditionally
independent given the ground truth.

In the linear system of Equations 1, Ti[g, yi] ∀ g, yi ∈ [K]
are unknowns. Since the matrix Ti is also right stochastic,
we have as many equations as the number of unknowns. This
system can be solved for Ti, provided the system is well-
defined. This requires that ω(Yj = yj) 6= 0 and for a unique
solution, the coefficient matrix of this linear system must
have linearly independent rows. This system of linear equa-
tions can be solved analytically. In practice, many libraries
are also available for computing the solution efficiently. We
now use this transitive method of finding unknown Ti to de-
velop our mechanism in the next section.

5 The Deep Bayesian Trust Mechanism
The Deep Bayesian Trust mechanism is summarized in
Mechanism 1 on the next page. It maintains a pool of work-
ers’ answers which are “informative” for evaluating other
workers. The meaning of the term informative will be ex-
plained later. The pool is initialized with some tasks and
their answers given by the oracle. In crowdsourcing termi-
nology, these are the gold task-answer pairs. The trustwor-
thiness matrix of the oracle is initialized to be To. Since by

definition, gold tasks are the tasks whose correct answers are
known, To is an identity matrix. The mechanism then pub-
lishes several batches of tasks on the platform such that each
batch has some tasks in common with the tasks solved by
the oracle and some unique new tasks in each batch. Work-
ers self-select themselves to solve one batch each and re-
port their answers for respective batches. Thus, the oracle
becomes the peer of each of these workers.
Let’s assume that the oracle solves so number of tasks. The
mechanism publishes k batches of tasks such that there are
so tasks in common with the oracle and sn unique new
tasks in each batch. Thus, it publishes k · sn tasks that are
new (not solved by the oracle already) and also k instances
of the same so tasks that are already solved by the oracle. k
becomes a hyper-parameter of the mechanism and so + sn
becomes the size of the batches solved by every worker.

As the workers start submitting their respective batches,
the mechanism also starts rewarding the workers for
their answers, asynchronously (without waiting for other
workers). To calculate the reward, the mechanism uses
Lemma 1 for finding the trustworthiness matrix of the
answers given by workers. Note that the lemma is appli-
cable because the trustworthiness of the peer (oracle) is
known. The reward for worker i is given by β · Ri, where
Ri =

( ∑
g∈[K]

Ti[g, g]
)
− 1 and β is a scaling constant.

Ri takes the summation of the diagonal entries of the trust-
worthiness matrix Ti. These are the accuracy parameters of
the worker (the probabilities of the workers’ answers be-
ing same as the ground truth). Ri further subtracts 1 from
this summation for technical reasons that will be exploited
later to ensure a desired incentive property.

The worker gets her reward and is out of the mechanism.
At this stage, the mechanism decides whether to reuse the
answers given by the worker for evaluating more workers.
If the worker’s answers satisfy a certain “informativeness”
criterion, they are added to the pool. If the worker’s answers
are added to the pool, the mechanism can immediately
publish more batches such that there are some tasks in
common with the new (non-gold) tasks just solved by the
previous worker and some more new tasks in each of the
batches. This step is the same as described earlier. The only
difference is that now the batches being published have
tasks in common with the tasks solved by a worker, not the
oracle (i.e. the peers are now other workers, not the oracle).
These steps are repeated in parallel and asynchronously
until the mechanism has obtained the desired number of
answers for all its unsolved tasks.

To summarize (Figure 2), the mechanism starts with an
answer pool seeded with the oracle’s answers, uses the an-
swers in the pool to assess trust in other workers’ answers,
expands this pool based on the informativeness of the work-
ers’ answers and repeats the process. We emphasize that
the mechanism doesn’t assign any permanent reputation to
workers. A worker’s answers being added to the pool is not
the same thing as a worker being “pre-screened” and cer-
tified trusted. We just evaluate the answers provided by a
worker in any given batch and add them to the answer pool



Mechanism 1 : The Deep Bayesian Trust Mechanism

1. Assign a set of tasks to the oracle o and obtain its answers on the tasks.
2. Initialize an Informative Answer Pool (IAP) with the answers given by oracle.

IAP =
[[
o : To : q1 − a1, q2 − a2, q3 − a3, ...

]]
o stands for oracle, To is the trustworthiness of the oracle and ql − al are the task − answer pairs provided by the oracle.

3. Select some tasks submitted by a worker from the IAP. If there is no worker yet in the IAP, select the oracle’s tasks.
4. Prepare a set of batches of tasks such that each batch contains tasks selected in the previous step. Mix some fresh tasks in

each of the batch.
5. Publish the batches on the platform and let workers self-select themselves to solve one batch each.
6. For any worker i who submits her batch, solve the system of Equations in 1 to find the unknown trustworthiness Ti. Reward

worker i for her answers with an amount equal to β ·Ri where, Ri =
( ∑

g∈[K]

Ti[g, g]
)
− 1.

7. If the answers of worker i satisfy the informativeness criterion, add the answers to the IAP and assign them trustworthiness
Ti as obtained in Step 6.
For example, at a given instant, the pool may look as follows :
AP =

[[
o : To : q1 − a1, q2 − a2, ...

]
,
[
W1 : TW1

: q2 − a2, q4 − a4, ....
]
,
[
W2 : TW2

: q2 − a2, q5 − a5, ...
]
, ...
]

Here, Wi are the identities of workers followed by their trustworthiness TWi
and their submitted task-answer pairs.

8. Asynchronously repeat steps 3, 4, 5, 6 and 7 whenever any worker submits her batch, until desired number of answers are
collected for all tasks.

together with an estimate of the trustworthiness of that batch
of answers.
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Figure 2: Illustration of the Deep Bayesian Trust Mechanism

Informativeness Criterion
We can now discuss the informativeness criterion for work-
ers’ answers, which was omitted earlier. The purpose of the
informativeness criterion is to check whether the answers
provided by a worker i can be used to estimate the trustwor-
thiness of another worker or not. As discussed in Section 4,
this depends on whether the coefficient matrix of the linear
system of equations has linearly independent rows or not.
For example, assume that the answers of worker j are added
to the pool and let i be another worker who gets j as her
peer in the future. In that case, the mechanism will solve the
following equations to estimate the trustworthiness of i:

ω(Yi = yi|Yj = yj) =
∑

g∈[K]

Ti[g, yi] ·
(Tj [g, yj ] · P (g)

ω(Yj = yj)

)
∀ yi, yj ∈ [K]

The coefficients Tj [g,yj ]·P (g)
ω(Yj=yj)

of this linear system don’t
depend on the answers given by worker i and the mechanism
can determine in advance whether the system will be solv-
able by just looking at these coefficients. If ω(Yj = yj) 6= 0
and the coefficient matrix is full rank, the informativeness
criterion is said to be satisfied and the answers of worker
j are added to the pool. It may be noted that the informa-
tiveness criterion doesn’t require answers of only truthful
or high proficiency workers to be added to the pool. An-
swers from non-truthful or low proficiency workers can also
be added to the pool.

To understand this technical criterion in more depth, note
that the coefficients Tj [g,yj ]·P (g)

ω(Yj=yj)
of the linear system are

equal to the posterior distribution P (G = g|Yj = yj) by
Bayes’ rule. Thus, the answers of a worker j satisfy the
informative criterion if the posterior distributions P (G =
g|Yj = yj) over g ∈ [K] for any two different yj ∈ [K]
are not identical. One interesting example, where the in-
formative criterion is not satisfied, is when the peer j plays
a heuristic strategy. In such a case, the reported answers
are not correlated with the ground truth and the posterior
distributions P (g|Yj = yj) are same as the prior distribu-
tion P (g) or in other words, the reported answers are not
“informative” of the ground truth.
It may be noted that the informativeness criterion is fairly
weak for the binary answer spaces. It only requires that
the reports of the peer j are not independent of the ground
truth (Tj [1, 1]+Tj [2, 2] 6= 1 =⇒ Tj [1, 1] 6= Tj [2, 1] =⇒
Tj [2, 2] 6= Tj [1, 2]).



6 Analysis
We now prove strong game-theoretical properties for our
mechanism. In this discussion, we will assume that a worker
and her peer solve many shared tasks (|Qi ∩ Qj | → ∞).
This is not the same as requiring every task to be solved by
large number of workers, which would have been inefficient.
In later sections, we will also discuss the empirical perfor-
mance of our mechanism without this assumption. We use
CE to denote the cost of effort required to solve a batch of
tasks. Proofs are provided in the supplementary material.

Theorem 1. If β > CE( ∑
g∈[K]

Ai[g,g]
)
−1

and Ai[g, g] >

Ai[g
′, g], ∀g′ 6= g, then the Deep Bayesian Trust mecha-

nism

(i) is dominant uniform strategy incentive compatible
(DUSIC) for every worker i;

(ii) ensures strictly positive expected reward in the truth-
ful strategy.

Theorem 1 requires a condition on the scaling constant β
to cover the cost of effort, and reduces to β > 0 when cost of
effort is 0. The condition required on proficiency matrix Ai

(i.e. Ai[g, g] > Ai[g
′, g], ∀g′ 6= g)2 can be more easily un-

derstood in the case of binary answers. In binary settings, the
condition is satisfied if Ai[0, 0] > 0.5 and Ai[1, 1] > 0.5.
This is not a condition on the honesty of the workers but
only on their ability. The condition merely ensures that the
worker can obtain answers that are positively correlated with
the ground truth. Such conditions are common in the lit-
erature (Dasgupta and Ghosh 2013). Unlike the literature,
the condition here only affects the best strategy of a given
worker, not of all the workers. For example, if the condition
is not satisfied for a worker, she may find it better to deviate
to a non-truthful strategy but it doesn’t affect the dominant
strategy of other workers. We note that such informed devi-
ation by a low proficiency worker to increase the accuracy
of her reported answers is not bad for the requester.

Corollary 1. The scaling constant β of the Deep Bayesian
Trust mechanism is independent of the probability of a
worker getting oracle or another truthful worker as peer.

Corollary 1 implies that to ensure incentive compatibil-
ity, our mechanism doesn’t need to scale up the rewards of
workers if the probability of a worker getting oracle or an-
other truthful worker as peer decreases.

Theorem 2. In the Deep Bayesian Trust mechanism, a
heuristic strategy gives zero expected reward.

It may be noted that the DUSIC result in Theorem 1 al-
ready implies that the heuristic strategies are not in equilib-
rium but Theorem 2 answers the question that what if some-
one still plays those strategies.

Limitation If, despite all these guarantees, every single
worker chooses to irrationally play a heuristic strategy, then
our mechanism will not be able to expand its pool and will be

2For binary answer space, the theorem can also be shown to
hold under a weaker condition Ai[0, 0] +Ai[1, 1] > 1.

forced to behave like other mechanisms which assign gold
tasks to every worker. But (i) such workers don’t gain any-
thing from the mechanism; (ii) the dominant incentive com-
patibility of the mechanism remains unaffected for any ra-
tional workers even in such a degenerate case; and (iii) the
heuristic strategy doesn’t become an equilibrium strategy.

Fairness of Rewards
Recently, concerns have been raised about fairness and
other ethical considerations in algorithms that affect hu-
mans (ACM 2017; Podesta et al. 2014). The discussion on
fair rewards in crowdsourcing has included issues such as
minimum wages and adequate compensation for time and
effort (Schmidt 2013) but there has not been any principled
approach to address the issue of fairness in rewards from
a non-discrimination perspective. For example, if a worker
with higher ability gets a lower reward than a worker with
lower ability because of the difference in the way they were
evaluated, then this is a potential case of unfairness. The un-
fairness is an unintentional and undesired property of the
existing mechanisms. Peer based mechanisms in the litera-
ture randomly select peers and reward the workers based on
their answers and the answers of their respective peers. The
reward of the workers is generally a function of their own
ability as well as their peers’ ability, making the rewards un-
fair. This unfairness issue in the peer based mechanisms was
first pointed out by (Kamar and Horvitz 2012). The issue
becomes more serious when workers know ex-ante that they
are being evaluated using peers with different proficiencies.
This is the case, for example, with the mechanism of (de Al-
faro et al. 2016). Our mechanism doesn’t need to inform the
workers about their peers at all but as we show, the mecha-
nism can satisfy an even stronger definition of fairness.
Definition 11 (Fair Incentive Mechanism). An incentive
mechanism is called fair if the expected reward of any
worker is directly proportional to the accuracy of the an-
swers reported by her and independent of the strategy and
proficiency of her random peer.

This is a reasonable definition of fairness and is in agree-
ment with the broader theory for individual fairness of al-
gorithms. For example, the pioneering work of (Dwork et
al. 2012) defines that fair algorithms take similar decisions
for individuals with similar relevant attributes. The relevant
attribute in our case is the worker’s accuracy. The definition
is also non-trivial to satisfy. In existing peer based mecha-
nisms, the rewards also depend on the unknown ability of
the peer (even if the peer can be believed to be truthful). For
example, in the mechanism of (Dasgupta and Ghosh 2013),
the reward of a worker in the truthful equilibrium is an in-
creasing function of her proficiency as well as her peer’s pro-
ficiency. On the contrary, our mechanism satisfies this def-
inition of fairness. The mechanism carefully uses the peer
answers only to find trustworthiness of a worker, which is
completely her own accuracy parameter and doesn’t depend
on her peer’s proficiency or strategy.
Theorem 3. The Deep Bayesian Trust Mechanism is fair.

This is perhaps a surprising result because in the exist-
ing framework of the peer based mechanisms, one would



perhaps reason that it is impossible for the rewards to not
depend on the accuracy of the peer.

7 Numerical Simulations
In this section, we evaluate the performance of our mecha-
nism empirically. We simulate the settings in which work-
ers with different proficiencies Ai report answers to dif-
ferent tasks. The proficiency matrices of different workers
were generated independently such that the diagonal entries
Ai[g, g] ∀g ∈ [K] were β(5, 1) distributed. The diagonal
entries Ai[g, g] ∀g ∈ [K] for a given worker i are not nec-
essarily the same as they are also independently generated.
Rest of the entries are generated randomly such that every
row of proficiency matrix sums to 1.

We consider following strategies that workers may play:

1. Truthful- Workers obtain answer for any given task
based on their respective proficiency matrices and report
the answers truthfully.

2. Heuristic - Workers’ reported answers are generated in-
dependently of their proficiency using a common distri-
bution over the answer space.

3. Permutation - Workers obtain answer for any given task
based on their respective proficiency matrices but they
apply a common permutation on the answers before re-
porting it to the mechanism. In a non-truthful permuta-
tion deterministic strategy (Shnayder et al. 2016), work-
ers solve the tasks, but they apply a permutation mapping
on the answers before reporting it to the mechanism. For
example, in a ternary answer space (K = 3), a permuta-
tion f can be as follows : f(0) = 1, f(1) = 2, f(2) = 0,
i.e., whenever the obtained answer is 0, workers report 1,
for 1, they report 2 and for 2, they report 0. In a binary
answer space, this corresponds to reporting the opposite
of the obtained answer.

In general, the simulations performed in the literature for
peer based mechanisms compare the average reward in dif-
ferent equilibria. For example, the average reward of work-
ers when all of them play a truthful strategy may be com-
pared with the average reward when all play a heuristic strat-
egy. This is because such mechanisms only guarantee that
different strategies are in equilibria and that one equilibrium
is more profitable than the other. But our stronger theoretical
result (dominant incentive compatibility) demands stronger
simulations. We go beyond comparing just equilibrium re-
wards and instead compare the rewards of workers playing
different strategies against one another at the same time.
More precisely, in our simulations, we don’t require every
worker to play a common strategy. Any worker can play a
heuristic, permutation or truthful strategy with equal prob-
ability. Such settings can’t be handled by mechanisms that
guarantee only equilibrium results. We will show that in our
mechanism, there is a clear distinction between the rewards
of workers playing different strategies with truthful workers
being nicely rewarded and others being penalized. Workers
were simulated to be hired in 4 rounds, with 5, 25, 125 and
625 workers in successive rounds. K was set to 2 in all the
experiments discussed in the paper.

Permutation

Figure 3: Distribution of rewards for workers with different
proficiencies playing different strategies

Figure 3 compares the distribution of rewards of workers
playing the three strategies. The rewards of the workers play-
ing the heuristic strategy are centered around 0, as expected
from Theorem 2. The reward of workers playing truthful
strategy are centered around a strictly positive value as pre-
dicted by Theorem 1. On the contrary, the rewards of work-
ers playing the permutation strategy are symmetrically cen-
tered around a strictly negative value. It may be noted that
in existing peer based mechanisms, permutation strategies
(in equilibria) are equally profitable as the truthful strategy,
which is clearly not the case with our mechanism. Firstly
neither heuristic nor permutation strategies are in equilib-
rium in our case and even if workers use any of these strate-
gies, they get lower reward than the truthful strategy.

Permutation

30 40

Figure 4: Average reward of workers playing different strate-
gies under different number of shared tasks

We now show the robustness of our mechanism with
respect to the number of shared tasks between workers.
We discussed only the asymptotic properties of the mecha-
nism earlier in the theoretical analysis. Hence, this simula-
tion study is important to show the performance of the mech-
anism with a finite number of shared tasks. Figure 4 com-
pares the average of rewards of the workers (with β(5, 1)
distributed proficiencies) playing different strategies under



different settings of the number of shared tasks. Error bars
show the standard deviation in 100 repeated runs. The trend
discussed in previous experiment can be observed to be
very robust to the number of shared tasks. Thus, the Deep
Bayesian Trust mechanism is attractive even when the num-
ber of shared tasks is not large. This simulation also implies
that with only 30 gold tasks (and given only to 5 workers),
the mechanism can reward 5+25+125+625+ ... workers.

We also simulated the settings in which the diagonal en-
tries Ai[g, g] ∀g ∈ [K] were uniformly distributed in ( 1

K , 1]
and repeated the above experiments. Results (with similar
observations) are available in the supplementary material.

We also conducted a preliminary study on Amazon Me-
chanical Turk to observe the effect of our mechanism in
encouraging workers to invest more effort. Workers were
given hard tasks related to natural language understanding,
and they had to given a binary (‘Yes’ or ‘No’) answer. The
details of the study are in the supplementary material. We
observed that in presence of our mechanism, the workers
invested more time in solving the tasks and the average ac-
curacy of their responses also improved.

8 Conclusions
We proposed the Deep Bayesian Trust mechanism to in-
centivize crowdworkers in large scale settings. The mecha-
nism rewards the workers for the correctness of their reports
without checking every worker with gold tasks. Instead, it
uses the correlation in the answers of the workers and their
peers to estimate their accuracy. The mechanism is guaran-
teed to be game theoretically robust to any strategic ma-
nipulation. Thus, it is also suitable even for the settings in
which workers of very heterogeneous proficiencies and mo-
tivations solve the tasks at the same time. The mechanism
also ensures fair rewards to workers, thus contributing to-
wards the bigger movement of making algorithmic decisions
fair. Among other issues, our mechanism notably addresses
the scalability issues in purely gold tasks based mechanisms,
the incentive compatibility issues in purely peer based mech-
anisms and the information requirement and fairness issues
in the mixed mechanisms.
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