Appendix for Probabilistic Graphical Models for Boosting
Cardinal and Ordinal Peer Grading in MOOCs

Fei Mi, Dit-Yan Yeung
fm, dyeyeung@cse.ust.hk

Cardinal Model Inference
In this section, we present details of the inference procedures
for the cardinal models (PG4 and PG5). Inference is analogous
to Gibbs sampling but strictly speaking it is not, due to
the lack of closed form for some distributions. In what follows,
we use the same notational convention as in the paper.
In addition, Z denotes the set of all peer assessments and
v → u means that v grades the submission by u.
The joint distribution for both PG4 and PG5 is:
P(Z, (s_u)_{u ∈ U}, (b_v)_{v ∈ V}, (τ_v)_{v ∈ V}) = \prod_{u ∈ U} (s_u | μ_u, γ_u, α_u) \prod_{v ∈ V} (τ_v | s_u, b_v, τ_v) \prod_{u ∈ Z} (z_u | s_u, b_v, τ_v)

We derive the posterior distributions for the latent
variables of PG4. For a particular student u_i, we derive the
posterior distribution of her latent true score as below (MB
denotes the Markov blanket). As we can see, the posterior
distribution has no closed form and so we have to use discrete
approximation with fine separating intervals (intervals of width 0.1 from 0 to the full score of the assignment).

s_i ∼ P(s_i | MB(s_i))
∝ p(s_i | μ, γ, α) p(τ_i | s_i, b_i, τ_i) \prod_{v ∈ V \cup u_i} p(z_{u_j} | s_{u_j}, b_{u_j}, τ_{u_j})
∝ G_{u_i} \exp \left(-\frac{1}{2} \left(γ_0 s_i - μ_0 \right)^2 - β_0 τ_i + \sum_{v ≠ u_i} τ_v (z_{u_i} - (s_{u_i} + b_{u_i}))^2 \right)

τ_i ∼ P(τ_i | MB(τ_i)) ∝ P(τ_i | z_{u_i}, b_i, s_i, s_{u_i}, α)
∝ p(τ_i | s_i, b_i) \prod_{u, v ≠ u_i} p(z_{u_j} | s_{u_j}, b_{u_j}, τ_{u_j})
∝ τ_{u_i}^{λ - 1} \exp \left(-β_0 τ_i + \frac{1}{2} \sum_{u, v ≠ u_i} (log τ_v - log 2π - (z_{u_i} - (s_i + b_i))^2) \right)

where : R_{u_i} = γ_0 + \sum_{v ≠ u_i} τ_v, Y_s = γ_0 μ_0 + \sum_{v ≠ u_i} τ_v (z_{u_i} - b_i),
G_{u_i} = \frac{β_0 e^{-2\frac{Y_s}{R_{u_i}}}}{Γ(\frac{λ}{2})} \frac{1}{R_{u_i}^{\frac{λ}{2}}}

For a particular peer grader v_i, we derive the closed-form posterior
distribution for her bias as follows:
b_i ∼ P(b_i | MB(b_i)) ∝ P(b_i | z_{u_i}, τ_i, s_i, s_0, α)
∝ p(b_i | s_0) \prod_{u ⊆ V \cup u_i} p(z_{u_j} | s_{u_j}, b_{u_j}, τ_{u_j})
∝ \exp \left(-\frac{1}{2} \left(γ_0 b_i - 2(\sum_{u_i = u} τ_i (z_{u_i} - s_i)) \right)^2 \right)

Similarly, we can derive the closed-form posterior distribution
for her reliability as follows:
τ_i ∼ P(τ_i | MB(τ_i)) ∝ P(τ_i | z_{u_i}, b_i, s_i, s_{u_i}, β)
∝ p(τ_i | s_i, b_i, τ_i) \prod_{u, v ≠ u_i} p(z_{u_j} | s_{u_j}, b_{u_j}, τ_{u_j})
∝ τ_{u_i}^{n_{u_i} - 1} \exp \left(-β_0 τ_i + \frac{1}{2} \sum_{u, v ≠ u_i} (z_{u_i} - (s_i + b_i))^2 \right)

It is in the form of a gamma distribution:
τ_i ∼ \mathcal{G} \left(\frac{n_{u_i} + n_{v_i}}{2}, \frac{n_{u_i} + n_{v_i}}{2} \right)

By taking the same approach, we can derive the correspon-
ding distributions for PG5:
s_i ∼ \mathcal{N} \left(γ_0 μ_0 + β_0 τ_0 + \sum_{u, v ≠ u_i} \frac{τ_v}{\lambda} (z_{u_i} - b_i), \frac{1}{γ_0 + β_0 + \sum_{u, v ≠ u_i} \frac{τ_v}{\lambda}} \right)
b_i ∼ \mathcal{N} \left(\sum_{u, v ≠ u_i} \frac{τ_v}{\lambda} (z_{u_i} - s_i), \frac{1}{n_{u_i} + n_{v_i} \frac{τ_v}{\lambda}} \right)
τ_i ∼ P(τ_i | MB(τ_i))
∝ \tau_{u_i}^{n_{u_i} - 1} \exp \left(-β_0 τ_i + \frac{1}{2} \sum_{u_i = u} (z_{u_i} - (s_i + b_i))^2 \right)

During the sampling procedure, we run for 300 iterations
with the first 60 samples removed as burn-in.
Parameter Sensitivity of Cardinal Models

As in the paper, we mainly tune β_0 in PG_4 and λ in PG_5. There is an optimal β_0 for PG_4 and λ for PG_5 for each specific setting of η_0 and γ_0, as illustrated for PG_5 in Figure 1. We also note that the error bar generally gets wider as λ increases. This indicates that the confidence of the predicted grades gets lower, in line with the posterior distribution derived for the true score. Similar observations have been noted for other settings of η_0 and γ_0 as well but they are not included due to the page limit.

For other hyperparameters, we have observed that η_0 and γ_0 are not as sensitive as β_0 in PG_4 and λ in PG_5. Namely, as long as η_0 and γ_0 in a reasonable range, we could obtain comparable accuracy by tuning β_0 or λ. The results in Table 3 and Table 6 of the paper were obtained after searching through combinations of the hyperparameters.

Ordinal Model Inference

This section describes the inference procedures for the pure cardinal models and the hyperparameter ranges considered, which are also applied to the “Cardinal + Ordinal” models. Basically, we use gradient descent with a learning rate of $1/\sqrt{t}$ at iteration t, stochastic gradient descent for the Bradley-Terry model and BT+G, and alternating block coordinate descent for RBTL.

Bradley-Terry Model

The cost function for the Bradley-Terry model is:

$$ L = \lambda_u a^2 + \frac{\lambda}{2\sigma^2} \sum_{u \in U} (s_u - \mu)^2 - \sum_{v \in V} \sum_{u_i > v} \sum_{j \in \rho(v)} s_{u_j} \log(\text{hypothesis}) $$

The update equations for the true score ($\sigma = 1$) are:

$$ \Delta s_u = -\eta \left(\frac{\lambda(s_u - \mu)}{2\sigma^2} - a(s_{u_i} - s_u) \right)(1 - \text{hypothesis}) $$

$$ \Delta s_{u_j} = -\eta \left(\frac{\lambda(s_{u_j} - \mu)}{2\sigma^2} - v(s_{u_j} - s_u) \right)(1 - \text{hypothesis}) $$

We fix $b = 0.2$, and tune λ in the range $[0.1, 2]$ with intervals of 0.2 and λ_u in $[50, 300]$ with intervals of 50.

BT+G Model

The cost function for BT+G is:

$$ L = \frac{\lambda_v}{2\sigma^2} (\tau_v - 1)^2 + \frac{\lambda}{2\sigma^2} \sum_{u \in U} (s_u - \mu)^2 - \sum_{v \in V} \sum_{u_i > v} \sum_{j \in \rho(v)} s_{u_j} \log(\text{hypothesis}) $$

The update equations for the true score ($\sigma = 1, \tau = 1$) are:

$$ \Delta \tau_v = -\eta \left(\frac{\lambda_v (\tau_v - 1)}{2\sigma^2} - (s_{u_i} - s_u) \right)(1 - \text{hypothesis}) $$

$$ \Delta s_{u_i} = -\eta \left(\frac{\lambda(s_u - \mu)}{2\sigma^2} - \tau_v \right)(1 - \text{hypothesis}) $$

$$ \Delta s_{u_j} = -\eta \left(\frac{\lambda(s_u - \mu)}{2\sigma^2} + \tau_v \right)(1 - \text{hypothesis}) $$

We tune λ in $[0.1, 2]$ with intervals of 0.2 and λ_v in $[0.5, 3]$ with intervals of 0.5.

For the “Cardinal+Ordinal” models, we use the same inference procedures and hyperparameter ranges for the above ordinal models, except that the parameter μ in the cost functions above are replaced by the predicted score μ_u for submission u obtained from a cardinal model.